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NUMERICAL STUDY OF INTERACTION OF A VORTICAL DENSITY

INHOMOGENEITY WITH SHOCK AND EXPANSION WAVES

A. POVITSKY * AND D. OFENGEIM t

Abstract. We studied the interaction of a vortical density in_homogeneity (VDI) with shock and expan-

sion waves. We call the VDI the region of concentrated vorticity (vortex) with a density different from that

of ambiance. Non-parallel directions of the density gradient normal to the VDI surface and the pressure

gradient across a shock wave results in an additional vorticity. The roll-up of the initial round VDI towards

a non-symmetrical shape is studied numerically.

Numerical modeling of this interaction is performed by a 2-D Euler code. The use of an adaptive

unstructured numerical grid makes it possible to obtain high accuracy and capture regions of induced vorticity

with a moderate overall number of mesh points. For the validation of the code, the computational results

are compared with available experimental results and good agreement is obtained.

The interaction of the VDI with a propagating shock wave is studied for a range of initial and induced

circulations and obtained flow patterns are presented. The splitting of the VDI develops into the formation

of a non-symmetrical vortex pair and not in a set of vorticcs.

A method for the analytical computation of an overall induced circulation F1 as a result of the interaction

of a moving VDI with a number of waves is proposed. Simplified, approximated, expressions for F1 are dcrived

and their accuracy is discussed.

The splitting of the VDI passing through the Prandtl-Meyer expansion wave is studied numerically. The

obtained VDI patterns are compared to those for the interaction of the VDI with a propagating shock wavc

for the same values of initial and induced circulations. These patterns have similar shapes for corresponding

time moments.

Key words, vortices, unstructured grids, automatic mesh refinement, Euler equations, vortical density

in_homogeneity, shock wave, expansion wave

Subject classification. Fluid Mechanics

1. Introduction. A common situation in compressible flows is that regions of concentrated vorticity

vortex) are also the regions of inhomogencous density, i.e, different density than ambiance. This vortical

density inhomogeneity (VDI) interacts with either a shock or an expansion wave, i.e., with regions of pressure

gradients. Current interest in this type of interaction is motivated to promote rapid mixing and combustion

of hydrogen and hydrocarbon fuels for supersonic combustor applications and problems of direct numerical

simulation of compressible turbulence. This research is a numerical investigation of this typc of interaction.

Previous investigations of this type of intcraction were concerned with the interaction of either a density

inhomogeneity (initial vorticity is zero) [1] or a "pure" vortex [2] (without initial density inhomogeneity)

with a shock wave.

Non-parallel directions of the density gradient normal to a VDI surface and the pressure gradient across
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a shock wave cause an additional vorticity (denoted also as induced vorticity). This vorticity causes the VDI

to roll up into a non-symmetrical shape and to evolve towards a set of vortices of a finite core size. Detailed

experiments were carried out by Jacobs [3] to quantify the mixing induced by the interaction of a shock

wave with a cylindrical volume of a light gas (helium). Yang et al. [4] obtained an approximate analytical

expression for this type of interaction.

A "pure" vortex interaction with a shock wave has been studied in various articles including the detailed

numerical research reported in [5]. The experimental research [6] has shown that the vortex is somewhat

compressed by the shock, while it generally retains the same configuration.

However, the interaction of the VDI with a shock wave as well as splitting of the VDI due to its passage

through regions of pressure gradients, like expansion waves, has not been studied previously.

Generally, the presence of an induced and initial circulation can lead to the roll-up of the VDI into

non-regular shapes, commonly including a number of vortices of different intensity. Our computations show

that vortices of the same sign merge into a single vortex and VDI shapes transform into a non-symmetrical

vortex pair of finite core size.

Our computations of the VDI interaction with an expansion wave show that in spite of obvious differences

between interactions of VDI with shock and expansion waves, similar VDI shapes are obtained for the same

values of induced and initial circulation. A correct estimation of induced circulation for the interaction with

an expansion wave should be done. In this article, we derive it for the Prandtl-Meyer expansion wave.

Special numerical techniques were used by various authors for capturing the roll-up of a gas bubble

moving with the flowfield after the shock-bubble interaction. Yang et al [4] use a regular numerical grid and

rectangular computational domain moving in time to track the developing vortex pair. Quirk and Karni

[7] use the Adaptive Mesh Refinement (AMR) algorithm. The AMR algorithm employs hierarchical system

of rectangular grids. A local solution at a previous time step is used to determine automatically where

refinement is needed to resolve small-scale phenomena.

An unstructured grid Euler solver [8]-[11] with a local refinement based on a density gradient is used in

this research. Its advantage is an automatic capture of thin regions of induced vorticity at the VDI boundary.

In section 2, governing equations and the computational method used are described. In section 3, we

investigate the phenomena of the VDI splitting due to the interaction with a propagating shock wave and

obtain dynamics of VDI patterns for a range of induced and initial circulation. In the last section, we derive

analytical estimations for induced circulation due to the VDI interaction with the Prandtl-Meyer expansion

wave and obtain VDI shapes by numerical computations.

2. Governing equations and numerical method. For a short limited time (a few milliseconds)

viscous effects are minor and a non-viscous assumption is used to describe the phenomenon [4], [7].

The two-dimensional unsteady Euler equations of gas dynamics describing an inviscid compressible flow

in conservative form can be written as:

(1) ut+f,+gu=0.

The vectors in equation (1) are

pu 2 + p puv

(2) ,f= ,g= ,

e (e + p)u + p)v



where p is density, p-static pressure, (u, v)- velocity in Cartesian coordinates (x, y), and e is the total energy,

related to the other variables by an equation of state which for a perfect gas is

p(3) e - _ 1) + +

where "y = 1.4 ratio of specific heats.

The inviscid calculations have been carried out using an Euler code [10]. The code combines advantages

of the total variation diminishing (TVD) finite-volume schemes, unstructured grids and an unsteady local

adaptation of the grid to the features of the flow. The second-order Godunov-type schemc modified for

transient flows and unstructured grids by Fursenko et al. [9], was employed to solve the Euler equations.

This scheme is based on the TVD approach combined with second-order upwind differenccs and a solution

of the Riemann problem to obtain inter-zone fluxes. More detailed description of the numerical method used

in the Euler code can be found in [8]-[9].

The unstructured grids are composed of triangular area elements, that provide a more isotropic spatial

discrctization as compared to traditional rectangular grids [8]. In order to generate an unstructured grid in

the computational domain the 2-D unstructured grid generator created by Voinovich and Galyukov [11] was

used. Fragments of the unstructured grid for a typical VDI interaction with a propagating shock wave are

shown in Figure la-b. The distance between the neighboring grid points is 2 k times smaller than the initial

distance. Computations are done with the maximum k equal to 5.

The graphical presentation of numerical results has been done by the grid data VIGIE code [12] that

allows to visualize an unstructured grid computed fluid flow.

There are no available experiments for interactions with the VDI; therefore, results of an experimental

research for the interaction of a moving shock wave with density inhomogeneity [3] are used for the codc

verification. Experiments were carried out for the interaction of a shock wave (M-1.09) with a cylindrical

volume of gas (helium) that is lighter than ambiance (air). Computational results are presented in Fig 2.

There is a good agreement with experimental results [3] at corresponding time moments.

3. Interaction between vortical density inhomogeneity and a propagating shock wave. A

computational domain for the interaction between the VDI and a straight propagating shock wave is shown

in Figure 3.

The initial conditions behind a shock wave are calculated according to the Rankine-Hugoniot rclations;

ahead of the shock wave ambient conditions are given. The shock wave proceeds into ambient conditions

and interacts with a vortex superimposed on the ambient state.

The initial density ratio (D = PJPh) between a light VDI material (Pl) and a heavy ambient air (Ph)

and the velocity ratio (W = Uc/Ub ) between a maximum tangential velocity (Uc) and a velocity behind the

shock wave (Ub) are governing parameters that determine the dynamics of the VDI shape after an intcraction

with a propagating shock wave.

The 2-D vortex model [5] used for the VDI consists of two regions of the vortical flow: an inner core

region (Re) and a surrounding region (Ro) where the velocity gradually reduces to zero (see Fig. 3a). In the

numerical experiments carried out the linear tangential velocity profile in the VDI core region is considered

and is represented by

r

(4) uo(,-) : uc ;r < ac,



the outer distribution is given by

(5) Uo(r) = Ar + --,B Rc < r < Ro
r

where Uo is the tangential velocity, Uc- maximum core velocity, r --=distance from vortex center, Re- vortex

core radius (Re =- 0.5Ro is used), Ro- outer radius.

The constants A and B are chosen in such a way that the velocity matches at r -- Rc and decays to zero

at r = Ro. The initial circulation F0 is equal to 27rRcUc. The vortex rotates counterclockwise.

An initial uniform density profile is taken inside the VDI (p = Pz for r < Ro).

Results of computations for the case D -- 0.2; W = 1.0 and Mach number of the shock wave M -- 1.5

are presented in Fig 4. Density isolines are shown at the time moments: 50/zs, 70lzs, 90#s, ll0#s, 157#s,

203#s, 4211_s. In order to visualize strengths of vortices, streamlines are drawn in Fig. 4e-h.

The induction of vorticity due to the interaction with a shock wave leads to stretching of the initial

vortex in the y direction. The interaction of the initial and induced vorticity results in further distortion of

the initial round vortex and its transformation to a "snake-like" structure with a long "tail" and a round

"head" (Fig 4h).

Streamlines in the upper part of Figs. 4e-f are far from a typical pattern of flux streamlines near a single-

point vortex. Later, initial and induced co-rotating counter-clockwise vorticity regions merge into one region

of concentrated vorticity (see Figs. 4g-h). The second counter-clockwise vortex is weak and hardly seen on

density isolines and streamlines. The streamlines become similar to those around a non-symmetrical vortex

pair.

In order to examine the influence of governing parameters W and D on VDI patterns three cases are

considered. The ratio F1/F0 is calculated for these cases and presented in Table 1.

TABLE 1

The VDI interaction with a propagating shock wave, Fo initial circulation, Fz induced circulation, Fo/FoA, and Fz/FIA

are ratios of initial and induced circulation to those in the case A

case

A 0.2

B 0.2

C 0.5

D = P_/Ph W : Uc/Ub Fo/FOA F1/F1A

1.0

0.5

1.0

1

0.5

1

Fo/FI

1 0.888

1 0.444

0.4 1.776

In order to estimate the induced circulation due to interaction between a VDI and a shock wave, an

approximate expression obtained for shock-bubble interaction [4] is used:

4Ro Ap ph - p,
(6) rl

Ys P2 Pl -4- ph '

where p2 and V_ are values of density and stream velocity behind the shock wave, Ap - pressure drop across

the shock wave.

The above expression was derived under the assumption of a uniform density profile inside the bubble,

i.e., the density gradient is only caused by the density difference between the bubble and ambiance.

However, the density profile inside the VDI is not uniform due to rotation, and we have to prove that

the density gradient at the outward boundary of the VDI (at the inner side) is equal to zero.



Aftera shorttime(priorto theinteraction)theprofilesofpressureanddensityinsidetheVDI become
closetothosegivenbyequilibriumequationsforanisentropicsteadyvortex:

(7)
@ _
dr r

P Pamb

7(8) Pomb

with the boundary condition pl(r = Ro) = Pamb, where the index 'arab' corresponds to the ambiance

conditions either in front or behind the shock wave.

The radial density gradient is obtained from (8):

dp dp
(9) dr _" Pl/'Y-l dr'

At the outward boundary of the VDI Uo = 0; therefore, the pressure gradient is equal to zero (see (7)).

Thus, the density gradient is also equal to zero at the inner side of the VDI boundary.

Dimensionless coordinates (x/Ro; y/Ro) of centers of vortices, relative density (Pc/Pamb) and pressure

(Pc/Pamb) at these centers in T = 421#s are presented in Table 2. Local pressure minimums are taken as

centers of vortices.

TABLE 2

VDI shapes, T = 421ps, MV-main counter-clockwise vortex, SV1- clockuase vortex, SV2-second counter-clockwise vortex.

Case A

zlRo ylno
MV 7.053 0.26

SV1 7.413 0.76

SV2 1.818 0.518

Pc/P_mb Pc/Pa,,_b

0.283 0.866

0.846 0.893

0.926 0.930

Case B

MV

SV1

SV2

x/Ro

6.82

7.23

5.45

y/Ro

0.37

3.03

0.13

p_/p_,,,b P_/Pamb

0.244 0.884

0.672 0.920

0.917 0.993

Case C

X/no y/no
MV 6.71 0.386

SV1 7.41 0.933

SV2 5.48 0.213

Pc/Pamb Pc/Pamb

0.415 0.788

0.968 0.961

0.971 0.956

The overall strength of vortices characterized by F0 + F1 is maximum in case A and minimum in case C

(see Table 1). Thus, the rotational velocity induced by vortices also reduces from case A to C. This rotational



velocityisaddedto thefluxvelocityUb and influences the speed of the VDI. The x-coordinate of the main

vortex is maximum in case A and minimum in case C.

Due to the process of the merge of two counter-clockwise vortices the y-coordinate of the main vortex is

shifted up. This shift is most marked in case A.

Density values show that the core of the main vortex remains almost unmixed. The mixing is more

complete for the clockwise vortex (SV1). The second counter-clockwise vortex (SV2) is mixed with ambiance

and its density is close to the ambiance density.

The values of a local pressure minimum at the centers of vortices depend upon the rotational velocity

and density inside the VDI (see (7)). The deeper pressure minimum in case C is explained by a 2.5-time

higher initial density than that in cases A and B. In spite of a higher density level in case C, the pressure

minimum in the center of SV1 vortex for case C is less than in cases A and B. This is due to a smaller

induced vorticity (see (6)) and a corresponding lower level of rotational velocity.

Results for W = 0.1,0.25, 0.5, 1.0 and the same initial density of the VDI D - 0.2, i.e., the computations

are performed for a constant F1 and various F0 values, are presented. Density isolines for these cases are given

in Fig 5a-d. The reduction of the initial rotational velocity leads to the formation of a more symmetrical

shape of a rolled-up VDI. In the case of a small initial vortical velocity a nearly symmetrical vortex pair is

obtained (Fig. 5a). For higher values of W the VDI structure becomes non-symmetrical. Pressure isolines

are shown in Fig 5e-h and a pair of two round vortices appears for all values of W.

In all cases considered in this section the splitting of the VDI developes into a non-symmetrical vortex

pair.

4. Interaction between VDI and expansion waves.

4.1. Estimation of induced circulation. The interaction between a Prandtl-Meyer expansion wave

and light vortical in_homogeneity is considered (Fig. 3b).

In a Prandtl-Meyer expansion wave streamlines diverge around a sharp convex corner. The mechanism of

inducing vorticity due to a non-paraUel gradient of density at the outer boundary of the vortex and gradient

of pressure is relevant for the case of VDI interaction with an expansion wave. However, in this case the VDI

passes through the region of pressure gradient and not through a steep pressure drop as in the previous case

of the interaction with a propagating shock wave. Therefore, the induced vorticity grows gradually and this

is an essential difference between the two types of interaction.

A search is made for an appropriate estimation of the circulation induced in a VDI passing through an

expansion wave. An expansion wave or a part of it can be characterized by upstream and downstream Mach

numbers (Mu and Ma, respectively). The approximation (6) was derived under the assumptions of stepwise

pressure drop across the shock wave and a constant velocity of a shock propagation. For the interaction

between the VDI and an expansion wave an approximate expression for an induced circulation is written as

a sum of the circulation induced due to interactions with n weak waves:

4R (p,- p,-1) \p-_l -_Ph ](10) F1 = _pp , ,
i=2

The variation of Mach number for all n waves is the same: 1

Md -- M_
(11) AM = M_+I - M_ -

n--1

1Variation of local angle is not the same for these n waves



P_-I and Pi denote upstream and downstream pressure of the i - th wave, Ri radius of the VDI in the

interaction with the i - th wave, V_ is the gas velocity upstream of the i - th wave and p, is the gas density

downstream of the i - th wave.

The last term (Ph -- Pl)/(Pt + Ph) is constant due to the fact that the density ratio Ph/Pt remains the

same for an isentropic expansion of gases with the same ratio of specific heats. The first term, Qi = R/(Vp)i

is variable as the radius of the VDI, velocity and density of the mainstream vary through an expansion wave.

The normalized value of induced circulation can be written as:

(12)

where Qd =

expansion wave.

_--_ Q, (p, - pi 1)
F1 Z_.,

,=2 Qd -Pal '

(R/(Vp))d and Pd are values of thc parameter Q and pressure downstream from the

The first term QjQd in the above equation can be expressed as a function of Mach numbers M, and

Md as follows. The radius of the VDI increases due to the expansion of streamlines. The distance between

streamlines is inversely proportional to the mass flux, Vp. Therefore, thc above term is given by the following

expression:

(13) \

Stream velocities are connected directly to Mach numbers:

(14)

where c - speed of sound.

Substituting isentropic relations [13]

Vd Ma Cd

Yi Mi ci _

"r

Pi + [('y 1)/2]M_ )

__!_1

P, + [(3' 1)/21M2]

(17) cd__ (1+ [(_ - 1)/2]M2_ ½

in (13), we have

+ [(_f - 1)/2]M_ '_ _
(18) '_: \Mi]Q'(Md_2(1____ 1)/2]M_]

The normalized induced circulation is computed by (12) vs. parameter Z = Mi/Md for Md = 1.25, 1.5,

1.75, 2.0 and is shown in Fig 6a. Computations were performed in an "upstream" manner up to Mu = 1, i.c,

for Z ranges from 1/Md to 1. The number of n waves is taken equal to 500.



Thecomputedinducedcirculation can be used for practical purposes. However, these numerical compu-

tatious are somewhat cumbersome, especially if an inversed problem is to be solved, i.e., to find M_ or Md

for a required level of induced circulation. On the other hand, the expression (6) is also an approximation

of circulation; thus, high accuracy of integration (10) is excessive.

If Qi is replaced by its approximation Qapp independent of the i- th wave, then F1 is equal to Qapp

multiplied by the difference of upstream and downstream pressures of the expansion wave. For this purpose

the function Qi(Z) is studied in detail. Graphs of Qi/Qd vs the parameter Z are shown in Fig. 6b. One can

see that it is a slightly convex function of Z and the first term in the sum (12) can be approximated by the

average value of Q_ and Qd:

(19) F _. 0.5(Q, + Qd)(P,_ - Pal)

The use of this approximation leads to an overestimation of induced circulation. A relative error between

an approximate normalized induced circulation (19) and its value computed by (12) is shown in Fig. 7. The

error increases with the Md/Mu ratio and with Md. For Z > 0.75, a relative error is no more than 10%.

A straightforward approximation of F in the same form as (6)

(20) F _ .--_-(Pu --Pal)
_uPd

leads to an underestimation of induced circulation. A relative error of the above approximation is more than

that for the previous approximation (19)) (compare families of curves a and b in Fig. 7).

4.2. Numerical study . The VDI splitting after its interaction with an expansion wave is studied

numerically. The expansion wave is considered provides the same amount of induced vorticity as for the

previously studied shock wave-VDI interaction. The upstream Mach number is taken equal to the Mach

number of the propagating shock in the previous case (M_ ---- 1.5). The value of induced circulation is

computed by (6). We choose an angle _ of the convex corner such as to produce the desired Prandtl-Meyer

expansion wave. For a given value of induced circulation the value of Qd is obtained from the expression

(19). The downstream Mach number Md is calculated from equation (18). The angle of the convex corner

is computed from

(21) # = V(Md) - v(M_,),

where v(M) is the Prandtl-Meyer function [13]. For example, for M_, --- 1.5 and the downstream Mach

number Md ----2.01 we obtain _ ----13°.

The distribution of rotational velocity is given by equations (4), (5). The maximum rotational velocity

of the vortex is taken equal to 0.3M. Thus, rotational velocity and initial circulation are the same as in the

previous case of the VDI interaction with a propagating shock wave.

A numerical simulation of the interaction between the VDI and the Prandtl-Meyer expansion wave is

performed as follows. First, the Euler equations are solved numerically to obtain a converged steady state

for uniformed flow followed by a Prandtl-Meyer expansion wave. After this the VDI was introduced into the

flowfield.

The computational domain and the VDI before the interaction are shown in Fig. 3b. Typical stages

of the VDI interaction with the expansion wave and downstream are presented in Fig. 8. Similar patterns

of the VDI shapes are observed after the interaction with shock and expansion waves. We recall that both



initial andinducedcirculationsareequalin thesetwocases.However,thetimescaleisdifferentin these
cases.TheeffcctivetimeofVDI splittingaftertheinteractionwith thePrandtl-Meyerexpansionwavecan
becomputedbyTel/= T - Tezit, where Te_it is the time when the VDI just passes an expansion wave and

get all induced vorticity from the interaction. Time should also be scaled by the mainstream velocity( 2.01

M / 0.6 M = 3.35 ). The VDI shape after the interaction with a shock wave at time T = ll0#s (Fig. 4e)

is compared with the VDI shape after interaction with the Prandtl-Meyer wave at the corresponding time

moment Tell -- 110 * 3.35 + 371 -- 740#s (Fig. 8h). One can conclude that the vortical shapes are similar

at corresponding times.

5. Conclusions. A numerical modeling of interaction between vortical density inhomogeneity (VDI)

and shock and expansion waves was performed using a 2-D Euler code. The use of an adaptive unstructured

numerical grid made it possible to obtain a high accuracy of computations and capture regions of induced

vorticity for a moderate overall number of mesh points.

The structure of two counter-rotating non-symmetrical vortices was observed after the VDI interaction

with a propagating shock wave.

Splitting of the VDI passing through the Prandtl-Meyer expansion wave was studied numerically. Thc

main difference between the interaction of the VDI with a shock wave and an expansion fan is a gradual

increase of the induced vorticity.

A method for the computation of an overall induced circulation as a result of the interaction with a

number of weak waves was proposed. A simplified approximation for computing this value was derived and

its accuracy was estimated analytically. This expression was used for the computation of the expansion angle

of the Prandtl-Mayer wave for a given value of the induced circulation.

The obtained shapes of the VDI after the interaction with an expansion wave are close to those obtained

for the shock-VDI interactions for the same values of initial and induced circulations. This gives us the

opportunity to obtain VDI shapes in a complicated geometry by the simulation of the interaction with a

straight propagating shock wave in a rectangular computationa] domain.
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FIG. 1. F_'_9 raent of unstructured 9_id with automatic mesh refinement: a, before the shock- VDI interaction; b, after the

interaction
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FIG. 2. Interaction of cyhndrical bubble _ith a propagating shock wave (M---1.09; D=0.1_; W=O). Density isolines are

taken with 40 equally spaced intervals between the minimum density inside the bubble and ambient density. The left side-our

computational results. The r_ght side-experimental results [3]. Times: a, 1237ts; b, 373/.ts; c, 573/_s; d, 773/_s
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FIG. 3. Computational domain: a, interaction of the VDI with a propagating shock wave; b, interaction of the VD1 with

the Prandtl-Meyer expansion wave
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FIG. 4. Interaction of the VD! u_th a propagating shock wave (D=O._; W=0.5) Density isolines are taken _th _0 equally

spaced intervals between density at the center of the countercloekudse vortex and ambient density. Times: a, O; b, 501_s; c,

701_s; d, 90ps; e, 110ps; f, 157pa; g, 203/J8; h, 421#8
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FIG. 5. Patterns of VDI shapes (D = 0.2) at T = 421its: a-d, density isolines; e-h, pressure isolines, a,e, W = 0.1; b,f,

W = 0.25; c,g, W -_ 0.5; d,h, W = 1
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FIG. 8. Interaction of the VDI with the Prandtl-Meyer expansion wave (D=O.2). Density isolines are taken with 40

equally spaced intervals between minimum density inside the VDI and density upstream the expansion wave. Times: a, O; b,

1841_s; e, 371#s; d, 453/_s; e, 535/_s; f, 617/_s; g, 699/_s; h, 781/_s
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